Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 471, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212318

RESUMO

Membrane technology using well-defined pore structure can achieve high ion purity and recovery. However, fine-tuning the inner pore structure of the separation nanofilm to be uniform and enhance the effective pore area is still challenging. Here, we report dendrimers with different peripheral groups that preferentially self-assemble in aqueous-phase amine solution to facilitate the formation of polyamide nanofilms with a well-defined effective pore range and uniform pore structure. The high permeabilities are maintained by forming asymmetric hollow nanostripe nanofilms, and their well-designed ion effective separation pore ranges show an enhancement, rationalized by molecular simulation. The self-assembled dendrimer polyamide membrane provides Cl-/SO42- selectivity more than 17 times that of its pristine polyamide counterparts, increasing from 167.9 to 2883.0. Furthermore, the designed membranes achieve higher Li purity and Li recovery compared to current state-of-the-art membranes. Such an approach provides a scalable strategy to fine-tune subnanometre structures in ion separation nanofilms.

2.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050327

RESUMO

A high-phosphorus-content polyphosphonate (PBDA), containing two phosphorus-based structures: phosphaphenanthrene (DOPO) and phenyl phosphonate groups, was synthesized and used in flame retardant polyethylene terephthalate (PET). Good self-extinguishing property (high UL 94 grade and LOI value), superior flame retardancy (lower heat/smoke release), and high quality retention (high carbon residue) were endowed to PET by PBDA. When 10 wt% PDBA was added, the peak heat release rate (pHRR), total heat release (THR), and total smoke rate (TSR) of PDBA/PET were found to be significantly reduced by 80%, 60.5%, and 21%, respectively, compared to the pure PET, and the LOI value jumped from 20.5% for pure PET to 28.7% with a UL-94 V-0 rating. The flame-retardant mode of action in PET was verified by thermogravimetric analysis-Fourier transform infrared (TGA-FTIR), pyrolysis gas chromatography/mass spectrometry (Py-GC/MS), real-time FTIR, and scanning electron microscopy (SEM). Phosphaphenanthrene and phosphonate moieties in PDBA decomposed in sequence during heating, continuously releasing and keeping high-content PO· and PO2· radicals with a quenching effect and simultaneously promoting the formation of viscous crosslinked char layers causing a high barrier effect. PDBA mainly acted in the gas phase but the condensed-phase flame retardant function was also considerable.

3.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112063

RESUMO

This work investigated the effect of different valence states of phosphorus-containing compounds on thermal decomposition and flame retardancy of polyethylene terephthalate (PET). Three polyphosphates-PBPP with +3-valence P, PBDP with +5-valence P and PBPDP with both +3/+5-valence P-were synthesized. The combustion behaviors of flame-retardant PET were studied and the structure-property relationships between the phosphorus-based structures with different valence states and flame-retardant properties were further explored. It was found that phosphorus valence states significantly affected the flame-retardant modes of action of polyphosphate in PET. For the phosphorus structures with +3-valence, more phosphorus-containing fragments were released in the gas phase, inhibiting polymer chain decomposition reactions; by contrast, those with +5-valence phosphorus retained more P in the condensed phase, promoting the formation of more P-rich char layers. It is worth noting that the polyphosphate containing both +3/+5-valence phosphorous tended to combine the advantage of phosphorus structures with two valence states and balance the flame-retardant effect in the gas phase and condensed phase. These results contribute to guiding the design of specified phosphorus-based structures of flame-retardant compounds in polymer materials.

4.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232556

RESUMO

A phosphorous-based bi-functional compound HPDAl was used as a reactive-type flame retardant (FR) in an epoxy thermoset (EP) aiming to improve the flame retardant efficiency of phosphorus-based compounds. HPDAl, consisting of two different P-groups of aluminum phosphinate (AHP) and phosphophenanthrene (DOPO) with different phosphorous chemical environments and thus exerting different FR actions, exhibited an intramolecular P-P groups synergy and possessed superior flame-retardant efficiency compared with DOPO or AHP alone or the physical combination of DOPO/AHP in EP. Adding 2 wt.% HPDAl made EP composites acquire a LOI value of 32.3%, pass a UL94 V-0 rating with a blowing-out effect, and exhibit a decrease in the heat/smoke release. The flame retardant modes of action of HPDAl were confirmed by the experiments of the scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetry-Fourier transform infrared spectroscopy-gas chromatograph/mass spectrometer (TG-FTIR-GC/MS). The results indicate that the phosphorous-based FRs show different influences on the flame retardancy of composites, mainly depending on their chemical structures. HPDAl had a flame inhibition effect in the gas phase and a charring effect in the condensed phase, with a well-balanced distribution of P content in the gas/condensed phase. Furthermore, the addition of HPDAl hardly impaired the mechanical properties of the matrix due to the link by chemical bonds between them.


Assuntos
Retardadores de Chama , Alumínio/química , Resinas Epóxi/química , Fósforo , Fumaça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...